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Abstract – 

Modular construction aims at overcoming challenges 

faced by the traditional construction process such as 

the shortage of skilled workers, fast-track project 

requirements, and cost associated with on-site 

productivity losses and recurrent rework. Since 

manufacturing is done off-site in controlled factory 

settings, modular construction is associated with 

increased productivity and better quality control. 

However, because every construction project is 

unique and results in distinct work pieces and 

building elements to be assembled, modular 

construction factories necessitate better mechanisms 

to assist workers during the assembly process in order 

to minimize errors in selecting the pieces to be 

assembled and idle times while figuring out the next 

step in an assembly sequence.   Machine intelligence 

provides opportunities for such assistance; however, 

a challenge is to rapidly generate large datasets with 

rich contextual data to train such intelligent agents.  

This work overviews a mechanism to generate such 

datasets in virtual environments and evaluates the 

performance of AI models trained using data 

generated in virtual environments in recognizing the 

next installation step in modular assembly sequences. 

Performance of the trained MV-CNN models (with 

accuracy of 0.97) shows that virtual environments can 

potentially be used to generate the required datasets 

for AI without the costly, time-consuming, and labor-

intensive investments needed upfront for capturing 

real-world data.  
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1 Introduction 

While productivity in other industries has doubled in 

the past decades, productivity in the construction industry 

has remained flat [26-27]. In addition, more challenges 

are faced with the shortage of skilled workers and tighter 

construction sites in urban settings that impact 

productivity in general. As a solution to this situation, the 

industry shows an interest towards modular construction, 

whose principle is to preassemble work pieces into 

volumetric units (or preassembled panels) off-site and 

stack them on-site. The advantage of off-site production 

is the controls over the working environment, so it is not 

affected by weather and site-specific conditions, and 

there is an opportunity to increase productivity because a 

relatively fixed production line can be maintained as 

compared to the conventional construction sequence. In 

addition, it is environmentally friendly with 15% less 

construction waste as compared to on-site construction 

[1]. Despite these advantages, the inherent unique nature 

of each construction project brings the same challenge to 

the modular construction processes, too. To enhance the 

productivity in modular construction factories and 

minimize rework and idle times of workers while 

identifying ever-changing work pieces and assembly 

sequences during manufacturing, intelligent agents can 

be used for assistance to identify the next step in an 

assembly sequence for workers. However, training such 

intelligent agents requires extensive information about 

features of a construction site, construction processes, 

and also geometries of assembled pieces [2]. This 

requirement, coupled with the variations in these due to 

the uniqueness (e.g., design, materials) of construction 

projects, increases the cost of gathering a large scale but 

contextually rich dataset needed for training of reliable 

AI models. Since quality and quantity of data are 

essential for training intelligent agents [3] and real-world 

data (which naturally has all the context needed for the 

training process) is expensive to capture, there is a need 

for alternative ways to rapidly generate realistic and 

context-rich datasets. 

In this study, we formulated an approach that 

leverages virtual environments reconstructed from real 

factories to rapidly and systematically generate large 

scale context-rich datasets and provided the results of a 

predictive model built for recognizing the assembly step 

in a sequence using the dataset generated in virtual 

environments.  
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2 Literature review 

This section provides (a) an overview of datasets 

generated by leveraging virtual environments for AI 

training, and (b) a brief synthesis of research studies at 

the intersection of AI and modular construction.  

2.1 Overview of datasets generated by 

leveraging virtual environments 

Although real world generated datasets effortlessly 

represent the rich complexity and the context required for 

AI to learn properly, they are expensive and require a 

longer upfront time to capture them. Virtual 

environments on the other hand provide a huge advantage 

of rapidly replicating real environments and representing 

a wide variety of objects in scenes. Realistic 

representation of the real environment in the virtual space 

is critical for data quality obtained from these 

environments. There are generally two main sources to 

bring reality to virtual environments: (1) a scanned 

environment [6-8,19,22], where a real environment is 

scanned and reconstructed as-is; and (2) a synthetic 

environment [5,20-21], where virtual environments are 

constructed through 3D modelling from scratch that 

reflect the principles of real world such as lighting, 

textures, and colours.   

Various datasets have been generated in virtual 

environments for scene understanding and object 

recognition purposes. Since the first generation of large 

dataset are limited to the 2D perspective images, many 

research groups put efforts on establishing large-scale 3D 

datasets that contain rich contextual information about 

the scenes to provide the datasets and benchmark systems 

to improve the scene understanding. These next 

generation 3D datasets are captured in different settings; 

such as scenes from urban environments [18], indoor 

settings from households [5], and indoor settings from 

offices [7] and can be applied to various problems such 

as object detection, scene understanding, and room 

layout estimation. Also, since the type of intelligence 

(e.g., self-driving, construction robot, household AI) 

expected from AI is determined based on the context of 

a dataset, the 3D environment should provide rich 

contextual information to AI. For example, for a 

construction robot to be tasked with understanding the 

next step in an assembly sequence, the dataset should 

include variations in geometric shapes that assemblies 

contain, variations in the views the sequence is captured, 

variations in the background where modules are 

assembled such as the location, surrounding objects, and 

congestion.  

For a smooth learning workflow, data should be well-

structured with RGB-D (Red, Green, Blue and Depth), 

annotations on objects in scenes (e.g., 2D-3D bounding 

boxes and classification labels, semantic labels), 

relationships between objects in scenes (e.g., scene graph 

generation from objects) [4]. Actively used datasets for 

experiments include, Matterport3D [6], AI2-THOR [5], 

Gibson env. [7], and Replica Dataset [8].  These datasets 

can be widely used for simulation such as scene 

understanding, robot navigation, and robotic 

manipulation. For instance, Gibson env. was utilized for 

creating 3D scene graphs containing semantic 

information of household furniture and rooms to serve 

the purpose of scene understanding [4]. Matterport3D 

provides 194,400 RGB-D real-world captured indoor 

images primarily for scene understanding purposes. On 

the other hand, AI2-THOR is providing digital models of 

89 apartments with 600 objects and interactions such as 

opening refrigerator. The purpose of this dataset is to 

train robot manipulator in the household context. 

Subsequently, Gibson env. provides laser scanned data of 

572 buildings which has semantics, depth, and normal of 

faces. This data aims to train sensorimotor robot AI 

models. Likewise, the Replica contains 18 scanned 

apartments models with depth and semantics of objects 

for scene understanding. 

The commonality of these datasets is that they were 

generated in virtual space that resembles the real-world 

for giving sufficient sensory information to AI to have 

perception to solve problems such as scene 

understanding, robot navigation, and robotic 

manipulation. In this paper, we reconstruct the 3D 

modular factory environment based on the actual factory 

and train AI model to understand the work progress in the 

modular construction factory context. 

 

2.2 Overview of AI based research in the 

modular construction domain 

Related research studies reveal that, machine learning 

techniques have been applied to various challenges such 

as automatic identification of construction activities 

[16,23-24], classification of subtypes of BIM objects 

[9,25], and detection of modules that are being stacked at 

a construction site [17]. In relation to modular 

construction domain, several machine learning 

algorithms such as Support Vector Machine (SVM) on 

video and audio data [16], LSTM [23-24],  and  Multi-

View Convolutional Neural Networks (MV-CNN) [9] 

have been evaluated. High model performances in these 

studies showed the applicability of deep learning in 

construction related problems with a relatively small 

dataset and computing resources by transfer learning 

from the models trained with larger datasets from the 

computer vision domain with an F-1 score of up to 0.93. 

However, the models are limited to inference of generic 

objects (e.g., door, wall) and the usability of these models 

to the problem of assembly sequence identification and 

classification is yet to be evaluated.   However, in general 
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previous research studies provide a sound point of 

departure, indicating (a) an opportunity to utilize feature 

engineering to enhance the classification results, (b) a 

high performance of models that utilize 2D perspective 

images captured from 3D models, and (c) a high 

performance of models in real world settings that are 

trained with synthetic data originated from virtual 

environments.  

3 Training AI for recognizing steps in 

module assembly sequences 

In this section, we overview our approach to generate 

synthetic data and then train vision-based AI progress 

classifier within virtual factory environments. We 

generated data from a virtual factory environment and 

trained a classification model to classify an recognize 

steps in module assembly sequences. Module assembly 

progress classifier detects the assembly step of a 

volumetric unit (or a panel assembly) given any stage of 

the assembly. So, this intelligent agent will detect the 

assembly step when the agent navigates in a factory 

setting and sees a module that is being assembled. This is 

an essential step in robotic assistance during the assembly 

process for determining the next piece that is needed in 

the sequence of an assembly.  

3.1 Data Generation Platform 

We leveraged VR environments to generate large 

amounts of data with minimum reality-gap and in a short 

time frame.  Generating realistic virtual environments 

(e.g., scanning, reconstructing, etc) has an upfront time 

investment that is justified by the a) elimination of 

relocation of the camera system from station to station in 

a factory setting or having to purchase a large collection 

of cameras to cover all stations; b) elimination of the time 

wasted while waiting for the real fabrication timing of 

modular pieces in order to completely capture assembly 

sequences; and c) elimination of bounding to the fixed 

number of viewpoints,  as experienced while capturing 

real images in factories.  

 

 
Figure 1. Scanned modular construction factory (top); 

Virtual factory environment (bottom) 

 

In order to generate datasets in virtual settings, we 

first created 3D factory environments from a modular 

construction factory that was scanned with terrestrial 

laser scanners and converted them into VR (Figure 1). 

This environment has been detailed in [12]. 

For simulating the module assembly processes, we 

obtained real volumetric module designs and separated 

the volumetric units into panels and work pieces in BIM 

authoring tools, and then exported them as IFC files. The 

volumetric modules in IFC format were integrated into 

the virtual factory environment while the virtual factory 

environment was reconstructed. Within the virtual 

environment, multi viewpoint images containing labels 

(as the steps of the module assembly sequence) were 

generated using scripts implemented in a 3D graphics 

tool’s API. Subsequently, generated images were split 

into training and test dataset using the 8:2 ratio.  

 

 
Figure 2. Overview of data generation and training 

process 

 

To capture multi-view images in the virtual 

environment, we set virtual cameras that focused on the 

volumetric modules (see Figure 3). The details of the 

entire multi-view camera-based platform that was 

developed by the authors are provided in [12]. In a 

nutshell, this platform is composed of a randomized 

camera system and rendering tools. The data is generated 

by systematically rotating camera views from 12 distinct 

locations. Using this platform, we generated 84,000 

images and separated them into training and testing data 

set using the 8:2 ratio. 
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Figure 3. 12 viewpoint camera system to capture images 

 

3.2 Multi-View Convolutional Neural 

Networks (MV-CNN) 

There are two main approaches to provide 3D 

geometric information to deep learning to identify given 

objects: 1) point clouds-based approach, which directly 

inputs raw point clouds [15]; 2) view-based approach, 

which inputs images from multiple viewpoints [10]. 

There is essentially no difference between these methods 

for object classification problems [8,13-14] even though 

point clouds have more accurate geometric information 

in 3D coordinates with the disadvantage of time 

consuming and expensive data capturing process. 

Furthermore, earlier studies showed that, MV-CNN has 

a higher overall accuracy as compared to point clouds-

based model or machine learning model (SVM) to 

identify and label 3D model elements [8,13-14]. Hence, 

in this study, MV-CNN was adopted to build the model 

to identify and label the steps in a module assembly 

sequence. 

In a nutshell, MV-CNN enables 3D shape recognition 

by retrieving geometric features from multiple 2D 

images and combining them into a single set of features. 

Each image is processed through CNN1 and pooled over 

images from multiple viewpoints process through CNN2 

for shape descriptor [10]. A single input for MV-CNN 

architecture in this work consists of 12 images captured 

from multiple viewpoints at a location and the 

corresponding label for those 12 images, which indicates 

the module assembly step (see Figure 4) (i.e., 1 input). 

We retrained the model upon the pre-trained MV-CNN 

that utilized generic 3D objects for training (e.g., chair, 

sofa, door, etc.). 

3.3 Ensuring context variation: sequence of 

module assembly, background 

environment 

The sequence of volumetric unit assembly used in this 

study is shown in Figure 5. The volumetric unit is 

composed of 14 pieces (e.g., frame chassis, wall panel, 

wall panel with door). Therefore, the generated dataset 

includes volumetric module assembly sequence captured 

at different times during the assembly process, at 

different backgrounds and from viewpoints while these 

fourteen 3D objects were being assembled in the factory.  

 

 

Figure 4. MV-CNN model architecture 
12 images captured in VR per label (left); Processed into MV-CNN architecture (middle); Classification: each label is a step 

in the assembly sequence  (right) 

 

Input model in the factory MV-CNN Model Architecture Module Fabrication Progress Classification

Camera

12 images 1 label

Single Input
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Figure 5. Module work pieces and numbered steps in 

the assembly sequence 

 

Because the classification model identifies module 

progress within the given factory environment, we placed 

modules for each assembly step of the fabrication 

randomly on the assembly area in the virtual factory 

(Figure 6). These randomized scenes are providing 

different background visual representation of input image 

data (e.g., lighting, background objects, etc.) for models 

to learn under different contexts. In addition, the 

materials (texture, color) of these varying background 

objects (e.g., factory walls, floor, ceiling) have been 

configured to bring more variance to the context. 

We generated 84,000 images which are 7,000 set of 

inputs (where each set has 12 images captured from 

different views per input). For each step of the assembly, 

we had 500 inputs, resulting in 500*12=6,000 images to 

use in the training. Therefore, each label (module 

assembly step) has 500 inputs that were separated into 

400 training sets and 100 training sets. 

 

 

Figure 6. Randomized location of modules to capture 

images 

4 Results 

The accuracy, precision, recall, and f1-score of model 

result are 0.97. The testing results are shown in Table 1 

as a confusion matrix. The prediction results of module 

assembly step 9 and step 13 are relatively lower than the 

other predicted labels (0.82 and 0.84, respectively). As 

the wrong predictions occurred later assembly steps, it is 

because majority viewpoints images are duplicated as 

completed parts are occluding the other parts (e.g., 

viewpoints image from 3 sides are same). Even though 

the background environments change, the model shows 

accurate results, which provides a strong evidence for 

suitability of using virtual environments for dataset 

generation.  

Since transfer learning is used, the training requires 

less computational resources and data. The accurate 

model with less cost through transfer learning shows that, 

the model can be tuned faster to adjust changes in 

volumetric units (or panels) to be assembled. This 

classifier can be used as a baseline to retrain classifiers 

for subsequent assembly sequences.  

5 Conclusion  

In this study, we evaluated the viability of training AI 

models for classifying module assembly sequences using 

the datasets generated in virtual environments within the 

modular construction context. Given the test dataset with 

possible variances, the model shows accurate results and 

Table 1. Confusion matrix for module assembly 

sequence classifier 

Predicted steps in the assembly sequence 

Act-

ual 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 100              

2  100             

3   100            

4    100           

5     100          

6      100         

7       100        

8       2 96  2     

9         82 17   1  

10          97 1  2  

11          1 98 1   

12            100   

13            1 84 15 

14              100 

 100 100 100 100 100 100 102 96 82 117 99 102 87 115 
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provides a clear point of departure for utilization of 

synthetic datasets for training models. This is an essential 

step towards robotic assistance where robots intelligently 

assist human workers to bring the next required 

workpiece in the assembly sequence by understanding 

the step at which the assembly is at any point in time.  

This paper provides the initial findings of an ongoing 

study and reports the following limitations. Since the 

training and test datasets were fully generated in virtual 

reality, verification in real-world settings is needed. We 

will evaluate the performance of this approach to 

generate and utilize datasets reflecting complex assembly 

lines (with various geometric representations and 

component types). We aim to utilize this approach for 

complicated module assembly sequences, where 

occlusions are more apparent and geometries are 

unconventional (e.g., spherical or cylindrical shaped 

work pieces). 
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